

ANNEE SCOLAIRE 2020 - 2021

Semestre : 2e Date : 1 juin 2021

Epreuve semestrielle regroupée Durée de l'épreuve : 100'

Discipline: **Mathématiques**Nombre de pages de l'énoncé (y compris la page d'en-tête): 4

Cours	Nombre d'élèves	Maître correcteur
1MA1.DF01	21	J. FILGUEIRAS
1MA1.DF02	21	S. MOODY
1MA1.DF03	23	S. MOODY
1MA1.DF04	21	R. NAGY GAUXACHS
1MA1.DF05	23	S. EZAHR
1MA1.DF06	24	M. WEISS
1MA1.DF07	24	S. FLEISCHMANN
1MA1.DF08	22	M. SCHIESS
1MA1.DF09	23	C. SCRUCCA

Documents autorisés		
a) Mis à disposition par le collège :	b) Personnels à l'élève :	
- aucun	- Calculatrice agréée (Tl30 ou Tl34 sauf modèles Pro)	

Nom, Prénom du candidat :	Groupe:
---------------------------	---------

Total: /65 points

Informations aux élèves :

• Recommandations générales :

- Sur la première page des feuilles d'épreuves, veuillez vous limiter aux informations administratives, à savoir votre nom, la date et le nom du maître de la discipline, et commencer l'épreuve proprement dite à la page suivante.
- Notez ensuite votre nom en haut de chaque page et numérotez-la.
- N'oubliez pas de rendre l'énoncé avec votre travail à la fin de l'épreuve.

• Recommandations particulières à la discipline :

- Le travail doit être propre et bien présenté. Il sera réalisé sur les feuilles quadrillées distribuées au début de l'épreuve. Aucune réponse ne doit figurer sur l'énoncé.
- Toutes les réponses doivent être justifiées, au moins par des calculs. Les réponses du type « un nombre » ou « oui/non » ne suffisent pas.

Exercice 1 (8 points)

Soient les fonctions f, g et h définies par les expressions suivantes :

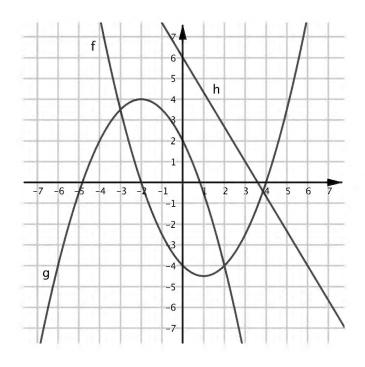
$$f(x) = \frac{-5x}{2x+3}$$
; $g(x) = \sqrt{5-4x}$; $h(x) = x^2 - 5x$

- a) Déterminer les domaines de définition de f, g et h. (4 pts)
- b) Déterminer si possible f(-3) et g(2). (2 pts)
- c) Déterminer $h^{-1}(-6)$. Justifier. (2 pts)

Exercice 2 (19 points)

Soient les fonctions f et g définies par les expressions suivantes :

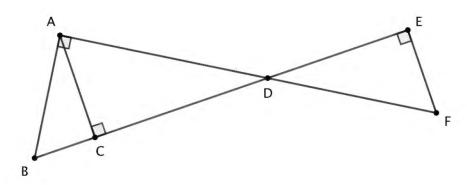
$$f(x) = 2x^2 - 5x - 3$$
; $g(x) = -3x + 1$


- a) Étudier la fonction f en parcourant les points suivants :
 - i) Déterminer l'ordonnée à l'origine de f. (1 pt)
 - ii) Déterminer le(s) zéro(s) de f. (3 pts)
 - iii) Déterminer les coordonnées du sommet de f. (2 pts)
 - iv) Déterminer l'équation de l'axe de symétrie de f. (1 pt)
 - v) Déterminer si f est convexe ou concave. (1 pt)
 - vi) Tracer une représentation de la fonction f, en tenant compte des résultats précédents. (4 pts)

(Repère avec unité égale à 2 carrés.)

- b) Étudier la fonction g en parcourant les points suivants :
 - i) Déterminer le(s) zéro(s) de g. (1 pt)
 - ii) Tracer une représentation de la fonction g. (2 pts) (Même repère que ci-dessus.)
- c) Déterminer algébriquement les coordonnées des éventuels points (4 pts) d'intersection entre les graphiques de f et g.

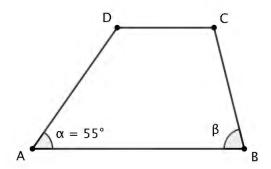
Exercice 3 (10 points)


Soient les fonctions f, g et h représentées graphiquement ci-dessous :

- a) Déterminer l'expression algébrique de la fonction f. (4 pts)
- b) Déterminer l'expression algébrique de la fonction h. (2 pts)
- c) Déterminer graphiquement f(3) et $g^{-1}(2)$. (2 pts)
- d) Résoudre graphiquement l'inéquation f(x) > g(x). (2 pts)

Exercice 4 (10 points)

Dans la figure ci-dessous, on sait que B, C, D, E sont alignés et A, D, F sont alignés. En outre, on connaît BC = 3, CD = 5 et DF = 4.

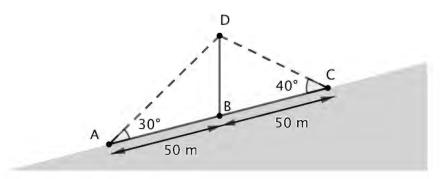


Calculer AB, AC, AD, DE et EF.

(Réponses en valeurs exactes.)

Exercice 5 (10 points)

Dans le trapèze ABCD ci-dessous, on sait que AB = 8 cm, AD = 7 cm et BC = 6 cm.



- a) Calculer la hauteur du trapèze ABCD. (2 pts)
- b) Calculer l'angle β . (2 pts)
- c) Calculer la longueur de la base CD. (5 pts)
- d) Calculer l'aire du trapèze ABCD. (1 pt)

(Réponses arrondies à deux décimales.)

Exercice 6 (8 points)

Un mât, situé sur le flanc d'une colline, est retenu par deux câbles comme indiqué sur la figure ci-dessous. Les points d'ancrage des câbles A et C sont situés à 50 m de part et d'autre du pied du mât B. Le câble aval AD forme un angle de 30° avec la colline tandis que le câble amont CD forme un angle de 40° avec la colline.

- a) Calculer l'angle ADC entre les deux câbles. (1 pt)
- b) Calculer les longueurs AD et CD des deux câbles. (4 pts)
- c) Calculer la hauteur BD du mât. (3 pts)

(Réponses arrondies à deux décimales.)

CORRIGE DE L'EPREUNE SENESTRIELLE DU 01.06.7071

$$f(x) = \frac{-5x}{2x+3}$$
; $g(x) = \sqrt{5-4x^2}$; $h(x) = x^2 - 5x$

a)
$$f(x) \in \mathbb{R} \oplus 2x + 3 \neq 0 \oplus x \neq -\frac{3}{2} \Rightarrow 0 \neq -\mathbb{R} \setminus \{-\frac{3}{2}\}$$

$$h(x) \in \mathbb{R} \iff X \in \mathbb{R} \implies Dh = 1R$$

b)
$$f(-3) = \frac{-5 \cdot (-3)}{2 \cdot (-3) + 3} = \frac{15}{-3} = -5$$

 $(2pt)$ $g(2) = \sqrt{5 - 4 \cdot 2} = \sqrt{-3}$ n'existe pas

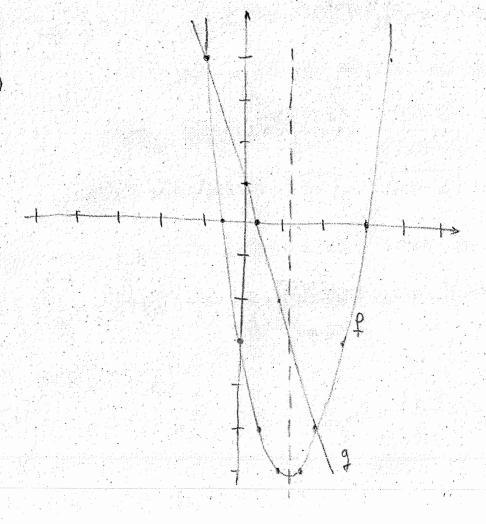
c)
$$h(x) = -6 \Rightarrow x^2 - 5x = -6 \Rightarrow x^2 - 5x + 6 = 0$$

Fx2

a)
$$f(x) = 2x^2 - 5x - 3$$

i)
$$f(0) = -3$$

ii)
$$f(x) = 0 \Leftrightarrow 2x^2 - 5x - 3 = 0$$


$$(3p4) \quad \triangle = (-5)^{2} - 4 \cdot 2 \cdot (-3) = 49$$

$$X_{1,2} = \frac{5 + (49)}{2 \cdot 2} = \frac{5 + 7}{4} = \begin{cases} 3 \\ -\frac{1}{2} \end{cases}$$

$$\Rightarrow f^{-1}(493) = 3 - \frac{1}{2} \cdot 33$$

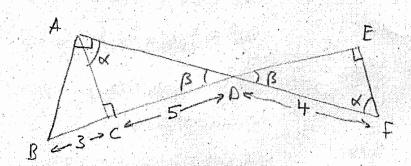
(24)
$$X_S = -\frac{b}{2a} = -\frac{(-5)}{2 \cdot 2} = \frac{5}{4}$$

 $Y_S = -\frac{\Delta}{4a} = -\frac{49}{4 \cdot 2} = -\frac{49}{8}$

$$iv) X = \frac{5}{4}$$

b)
$$g(x) = -3x+1$$

$$(1pt) \Rightarrow g(103) = \{\frac{1}{3}\}$$


G)
$$f(x) = g(x)$$

 $(4p4) 2x^2-5x-3 \le -3x+1$
 $2x^2-2x-4 = 0$
 $x^2-x-2 = 0$
 $(x+1)(x-2) = 0$
 $x=-1 \text{ et } x=2$

$$91 = 9(-1) = -3(-1) + 1 = 4$$

 $92 = 9(2) = -3.2 + 1 = -5$
If y a done dux points
d'intersection:
 $A = (-1, 4)$ et $B = (2, -5)$

a)
$$f(x) = a(x-x_1)(x-x_2)$$

 $(4pt)$. $zeros: -2e+4 = x_1 = -2e+x_2 = 4$
= $f(x) = a(x+2)(x-4)$
· ord. orig. $1-4 = f(0) = -4$
= $a(0+2)(0-4) = -4 = -8a = -4 = a = \frac{1}{2}$
= $f(x) = \frac{1}{2}(x+2)(x-4) = \frac{1}{2}x^2-x-4$

(Ept) . pento
$$-\frac{5}{3} \Rightarrow \alpha = -\frac{5}{3}$$

. ord. or. $6 \Rightarrow b = 6$
 $\Rightarrow h(x) = -\frac{5}{3}x + 6$
c) $f(3) = -2,5$

Ex 4

. The Evidade ABD:

. Th. Pyllugone ABD:

. Th. Hauteur ABD

- . Trioungles ACD et DEF sont semblables
- . The Thates ACD DEF

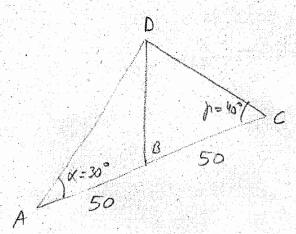
$$\frac{DE}{CP} = \frac{DF}{AD} \Leftrightarrow DE = \frac{DF \cdot CD}{AD} = \frac{4.5}{270} = 170$$

. The Pything one DEF

a) Trigo AED:

$$(2ph)$$
 $SIn(x) = \frac{DE}{AD} \Leftrightarrow DE = ADSin(x) = 7.5in(55°) \precess{5,73} cm$

b) Trigo BCF:


$$(2p+)$$
 Sin(β) = $\frac{CF}{BC} \Leftrightarrow \beta = Sin'(\frac{CF}{BC}) = Sin'(\frac{5/73}{6}) \Leftrightarrow 72,880$

(5pt)
$$\cos(\alpha) = \frac{AE}{AD} \iff AE = AD \cos(\alpha) = 7\cos(55^\circ) = 4,02 \text{ cm}$$

. Trigo BCF

$$\cos(\beta) = \frac{8f}{BC} \iff BF = BC\cos(\beta) = 6.\cos(72,88^\circ) = 1,77 \text{ cm}$$

Ex6

a) Somme augles ACD:

b) Th. sinus ACD:

$$\frac{(4pt)}{Sin(pt)} = \frac{AC}{Sin(ADC)} \stackrel{\triangle}{=} AD = \frac{AC \cdot Sin(pt)}{Sin(ADC)} = \frac{100 \cdot Sin(40^4)}{Sin(ADC)} = \frac{68,40 \text{ m}}{Sin(ADC)}$$

c) Th. cosinus ABC

$$\Rightarrow BD = (AB^{2} + AD^{2} - ZABAD.\cos(w) = (50^{2} + 68,404^{2} - 2.50.68,404\cos(30))$$

$$\leq 35,43 \text{ m}$$